Nitric Oxide Contributes to Cadmium Toxicity in Arabidopsis by Promoting Cadmium Accumulation in Roots and by Up-Regulating Genes Related to Iron Uptake

Author:

Besson-Bard Angélique1,Gravot Antoine1,Richaud Pierre1,Auroy Pascaline1,Duc Céline1,Gaymard Frédéric1,Taconnat Ludivine1,Renou Jean-Pierre1,Pugin Alain1,Wendehenne David1

Affiliation:

1. UMR INRA 1088/CNRS 5184/Université de Bourgogne, Plante-Microbe-Environnement, 21065 Dijon cedex, France (A.B.-B., A.P., D.W.); UMR 118 Amélioration des Plantes et Biotechnologies Végétales, INRA/Agrocampus Rennes/Université Rennes 1, 35653 Le Rheu cedex, France (A.G.); Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, SBVME, IBEB, DSV, CEA, CNRS, Université A

Abstract

Abstract Nitric oxide (NO) functions as a cell-signaling molecule in plants. In particular, a role for NO in the regulation of iron homeostasis and in the plant response to toxic metals has been proposed. Here, we investigated the synthesis and the role of NO in plants exposed to cadmium (Cd2+), a nonessential and toxic metal. We demonstrate that Cd2+ induces NO synthesis in roots and leaves of Arabidopsis (Arabidopsis thaliana) seedlings. This production, which is sensitive to NO synthase inhibitors, does not involve nitrate reductase and AtNOA1 but requires IRT1, encoding a major plasma membrane transporter for iron but also Cd2+. By analyzing the incidence of NO scavenging or inhibition of its synthesis during Cd2+ treatment, we demonstrated that NO contributes to Cd2+-triggered inhibition of root growth. To understand the mechanisms underlying this process, a microarray analysis was performed in order to identify NO-modulated root genes up- and down-regulated during Cd2+ treatment. Forty-three genes were identified encoding proteins related to iron homeostasis, proteolysis, nitrogen assimilation/metabolism, and root growth. These genes include IRT1. Investigation of the metal and ion contents in Cd2+-treated roots in which NO synthesis was impaired indicates that IRT1 up-regulation by NO was consistently correlated to NO's ability to promote Cd2+ accumulation in roots. This analysis also highlights that NO is responsible for Cd2+-induced inhibition of root Ca2+ accumulation. Taken together, our results suggest that NO contributes to Cd2+ toxicity by favoring Cd2+ versus Ca2+ uptake and by initiating a cellular pathway resembling those activated upon iron deprivation.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 331 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3