Cell Culture-Induced Gradual and Frequent Epigenetic Reprogramming of Invertedly Repeated Tobacco Transgene Epialleles

Author:

Krizova Katerina1,Fojtova Miloslava1,Depicker Ann1,Kovarik Ales1

Affiliation:

1. Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic (K.K., M.F., A.K.); and Department of Plant Systems Biology, Flanders Institute for Biotechnology, and Department of Molecular Genetics, Ghent University, B–9052 Ghent, Belgium (A.D.)

Abstract

AbstractUsing a two-component transgene system involving two epiallelic variants of the invertedly repeated transgenes in locus 1 (Lo1) and a homologous single-copy transgene locus 2 (Lo2), we have studied the stability of the methylation patterns and trans-silencing interactions in cell culture and regenerated tobacco (Nicotiana tabacum) plants. The posttranscriptionally silenced (PTGS) epiallele of the Lo1 trans-silences and trans-methylates the target Lo2 in a hybrid (Lo1/Lo2 line), while its transcriptionally silenced variant (Lo1E) does not. This pattern was stable over several generations in plants. However, in early Lo1E/Lo2 callus, decreased transgene expression and partial loss of Lo1E promoter methylation compared with leaf tissue in the parental plant were observed. Analysis of small RNA species and coding region methylation suggested that the transgenes were silenced by a PTGS mechanism. The Lo1/Lo2 line remained silenced, but the nonmethylated Lo1 promoter acquired partial methylation in later callus stages. These data indicate that a cell culture process has brought both epialleles to a similar epigenetic ground. Bisulfite sequencing of the 35S promoter within the Lo1 silencer revealed molecules with no, intermediate, and high levels of methylation, demonstrating, to our knowledge for the first time, cell-to-cell methylation diversity of callus. Regenerated plants showed high interindividual but low intraindividual epigenetic variability, indicating that the callus-induced epiallelic variants were transmitted to plants and became fixed. We propose that epigenetic changes associated with dedifferentiation might influence regulatory pathways mediated by trans-PTGS processes.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3