Affiliation:
1. Laboratory of Plant Cell Biology, Department of Plant Sciences, Wageningen University, 6703–BD Wageningen, The Netherlands (A.E.-O., J.W.V., A.A.M.v.L., A.M.C.E.); and FOM Institute for Atomic and Molecular Physics, 1009–DB Amsterdam, The Netherlands (A.M.C.E.)
Abstract
Abstract
The cell plate is the new cell wall, with bordering plasma membrane, that is formed between two daughter cells in plants, and it is formed by fusion of vesicles (approximately 60 nm). To start to determine physical properties of cell plate forming vesicles for their transport through the phragmoplast, and fusion with each other, we microinjected fluorescent synthetic lipid vesicles that were made of 1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DOPG) into Tradescantia virginiana stamen hair cells. During interphase, the 60-nm wide DOPG vesicles moved inside the cytoplasm comparably to organelles. During cytokinesis, they were transported through the phragmoplast and accumulated in the cell plate region together with the endogenous vesicles, even inside the central cell plate region. Because at this stage microtubules are virtually absent from that region, while actin filaments are present, actin filaments may have a role in the transport of vesicles toward the cell plate. Unlike the endogenous vesicles, the synthetic DOPG vesicles did not fuse with the developing cell plate. Instead, they redistributed into the cytoplasm of the daughter cells upon completion of cytokinesis. Because the redistribution of the vesicles occurs when actin filaments disappear from the phragmoplast, actin filaments may be involved in keeping the vesicles inside the developing cell plate region.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献