Molecular and Genetic Evidence for the Key Role of AtCaM3 in Heat-Shock Signal Transduction in Arabidopsis

Author:

Zhang Wei1,Zhou Ren-Gang1,Gao Ying-Jie1,Zheng Shu-Zhi1,Xu Peng1,Zhang Su-Qiao1,Sun Da-Ye1

Affiliation:

1. Institute of Molecular Cell Biology, Hebei Normal University, Shijiazhuang 050016, China (W.Z., Y.-J.G., S.-Z.Z., P.X., S.-Q.Z., D.-Y.S.); Institute of Genetics and Physiology, Hebei Academy of Agricultural Sciences, Shijiazhuang 050051, China (R.-G.Z.); and Center for Agricultural Resources, Research Institute of Genetics and Development, Shijiazhuang 050021, China (W.Z.)

Abstract

AbstractHeat shock (HS) is a common form of stress suffered by plants. It has been proposed that calmodulin (CaM) is involved in HS signal transduction, but direct evidence has been lacking. To investigate the potential regulatory function of CaM in the HS signal transduction pathway, T-DNA knockout mutants for AtCaM2, AtCaM3, and AtCaM4 were obtained and their thermotolerance tested. Of the three knockout mutant plants, there were no differences compared with wild-type plants under normal conditions. However, the AtCaM3 knockout mutant showed a clear reduction in thermotolerance after heat treatment at 45°C for 50 min. Overexpression of AtCaM3 in either the AtCaM3 knockout or wild-type background significantly rescued or increased the thermotolerance, respectively. Results from electrophoretic mobility-shift assays, real-time quantitative reverse transcription-polymerase chain reaction, and western-blot analyses revealed that, after HS, the DNA-binding activity of HS transcription factors, mRNA transcription of HS protein genes, and accumulation of HS protein were down-regulated in the AtCaM3 knockout mutant and up-regulated in the AtCaM3-overexpressing transgenic lines. Taken together, these results suggest that endogenous AtCaM3 is a key component in the Ca2+-CaM HS signal transduction pathway.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3