Innate Immunity Signaling: Cytosolic Ca2+ Elevation Is Linked to Downstream Nitric Oxide Generation through the Action of Calmodulin or a Calmodulin-Like Protein

Author:

Ma Wei1,Smigel Andries1,Tsai Yu-Chang1,Braam Janet1,Berkowitz Gerald A.1

Affiliation:

1. Agricultural Biotechnology Laboratory, University of Connecticut, Storrs, Connecticut 06269–4163 (W.M., A.S., G.A.B.); and Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251 (Y.-C.T., J.B.)

Abstract

Abstract Ca2+ rise and nitric oxide (NO) generation are essential early steps in plant innate immunity and initiate the hypersensitive response (HR) to avirulent pathogens. Previous work from this laboratory has demonstrated that a loss-of-function mutation of an Arabidopsis (Arabidopsis thaliana) plasma membrane Ca2+-permeable inwardly conducting ion channel impairs HR and that this phenotype could be rescued by the application of a NO donor. At present, the mechanism linking cytosolic Ca2+ rise to NO generation during pathogen response signaling in plants is still unclear. Animal nitric oxide synthase (NOS) activation is Ca2+/calmodulin (CaM) dependent. Here, we present biochemical and genetic evidence consistent with a similar regulatory mechanism in plants: a pathogen-induced Ca2+ signal leads to CaM and/or a CaM-like protein (CML) activation of NOS. In wild-type Arabidopsis plants, the use of a CaM antagonist prevents NO generation and the HR. Application of a CaM antagonist does not prevent pathogen-induced cytosolic Ca2+ elevation, excluding the possibility of CaM acting upstream from Ca2+. The CaM antagonist and Ca2+ chelation abolish NO generation in wild-type Arabidopsis leaf protein extracts as well, suggesting that plant NOS activity is Ca2+/CaM dependent in vitro. The CaM-like protein CML24 has been previously associated with NO-related phenotypes in Arabidopsis. Here, we find that innate immune response phenotypes (HR and [avirulent] pathogen-induced NO elevation in leaves) are inhibited in loss-of-function cml24-4 mutant plants. Pathogen-associated molecular pattern-mediated NO generation in cells of cml24-4 mutants is impaired as well. Our work suggests that the initial pathogen recognition signal of Ca2+ influx into the cytosol activates CaM and/or a CML, which then acts to induce downstream NO synthesis as intermediary steps in a pathogen perception signaling cascade, leading to innate immune responses, including the HR.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3