RNA-Directed RNA Polymerase3fromNicotiana attenuataIs Required for Competitive Growth in Natural Environments

Author:

Pandey Shree P.1,Gaquerel Emmanuel1,Gase Klaus1,Baldwin Ian T.1

Affiliation:

1. Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Jena 07745, Germany

Abstract

AbstractSDE1/SGS2/RdR6, a putative RNA-directed RNA polymerase, maintains plant defenses against viruses in Arabidopsis (Arabidopsis thaliana) and Nicotiana benthamiana, but its function has not been examined in natural habitats or with respect to other ecological stresses. We evaluated the organismic-level function of this gene (NaRdR3) in an ecological model species, Nicotiana attenuata, by transforming plants to stably silence RdR3 (irRdR3). Minor morphological changes (elongated leaves and reduced leaf number) and increased susceptibility to tobamoviruses typical of RdR6 silencing in other species were observed, but these changes did not alter the reproductive performance of singly grown plants (measured as seed and capsule production) or herbivore resistance in laboratory trials. 454-sequencing of irRdR3's small RNA (smRNA) transcriptome revealed that 21- and 24-nucleotide smRNAs were not affected, but the abundance of 22- to 23-nucleotide smRNAs was reduced. When planted in pairs with wild-type plants in N. attenuata's natural habitat in the Great Basin Desert, irRdR3 plants produced shorter stalks with significantly reduced flower and capsule numbers, but did not influence the ability of plants to resist the native herbivore community, indicating that silencing RdR3 reduced a plant's competitive ability. We tested this hypothesis in the glasshouse by planting irRdR3 and wild-type pairs in communal containers; again irRdR3 plants had severely reduced stalk elongation and reproductive measures. The reduced competitive ability of irRdR3 plants was associated with altered phytohormone homeostasis, especially as reflected in the distribution of auxin. We suggest that RdR3 helps to regulate hormone balance when plants compete with conspecifics in natural environments.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3