System Potentials, a Novel Electrical Long-Distance Apoplastic Signal in Plants, Induced by Wounding

Author:

Zimmermann Matthias R.1,Maischak Heiko1,Mithöfer Axel1,Boland Wilhelm1,Felle Hubert H.1

Affiliation:

1. Botanisches Institut I, Justus-Liebig-Universität, D–35390 Giessen, Germany (M.R.Z., H.H.F.); and Max-Planck-Institut für Chemische Ökologie, D–07745 Jena, Germany (H.M., A.M., W.B.)

Abstract

Abstract Systemic signaling was investigated in both a dicot (Vicia faba) and a monocot (Hordeum vulgare) plant. Stimuli were applied to one leaf (S-leaf), and apoplastic responses were monitored on a distant leaf (target; T-leaf) with microelectrodes positioned in substomatal cavities of open stomata. Leaves that had been injured by cutting and to which a variety of cations were subsequently added caused voltage transients at the T-leaf, which are neither action potentials nor variation potentials: with respect to the cell interior, the initial polarity of these voltage transients is hyperpolarizing; they do not obey the all-or-none rule but depend on both the concentration and the type of substance added and propagate at 5 to 10 cm min−1. This response is thought to be due to the stimulation of the plasma membrane H+-ATPase, a notion supported by the action of fusicoccin, which also causes such voltage transients to appear on the T-leaf, whereas orthovanadate prevents their propagation. Moreover, apoplastic ion flux analysis reveals that, in contrast to action or variation potentials, all of the investigated ion movements (Ca2+, K+, H+, and Cl−) occur after the voltage change begins. We suggest that these wound-induced “system potentials” represent a new type of electrical long-distance signaling in higher plants.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3