Transcriptome Analyses Show Changes in Gene Expression to Accompany Pollen Germination and Tube Growth in Arabidopsis

Author:

Wang Yi1,Zhang Wen-Zheng1,Song Lian-Fen1,Zou Jun-Jie1,Su Zhen1,Wu Wei-Hua1

Affiliation:

1. State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Center (Beijing), China Agricultural University, Beijing 100193, China

Abstract

Abstract Pollen germination, along with pollen tube growth, is an essential process for the reproduction of flowering plants. The germinating pollen with tip-growth characteristics provides an ideal model system for the study of cell growth and morphogenesis. As an essential step toward a detailed understanding of this important process, the objective of this study was to comprehensively analyze the transcriptome changes during pollen germination and pollen tube growth. Using Affymetrix Arabidopsis (Arabidopsis thaliana) ATH1 Genome Arrays, this study is, to our knowledge, the first to show the changes in the transcriptome from desiccated mature pollen grains to hydrated pollen grains and then to pollen tubes of Arabidopsis. The number of expressed genes, either for total expressed genes or for specifically expressed genes, increased significantly from desiccated mature pollen to hydrated pollen and again to growing pollen tubes, which is consistent with the finding that pollen germination and tube growth were significantly inhibited in vitro by a transcriptional inhibitor. The results of Gene Ontology analyses showed that expression of genes related to cell rescue, transcription, signal transduction, and cellular transport was significantly changed, especially for up-regulation, during pollen germination and tube growth. In particular, genes of the calmodulin/calmodulin-like protein, cation/hydrogen exchanger, and heat shock protein families showed the most significant changes during pollen germination and tube growth. These results demonstrate that the overall transcription of genes, both in the number of expressed genes and in the levels of transcription, was increased. Furthermore, the appearance of many novel transcripts during pollen germination as well as tube growth indicates that these newly expressed genes may function in this complex process.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3