Diel Growth Cycle of Isolated Leaf Discs Analyzed with a Novel, High-Throughput Three-Dimensional Imaging Method Is Identical to That of Intact Leaves

Author:

Biskup Bernhard1,Scharr Hanno1,Fischbach Andreas1,Wiese-Klinkenberg Anika1,Schurr Ulrich1,Walter Achim1

Affiliation:

1. Institute of Chemistry and Dynamics of the Geosphere ICG-3 (Phytosphere), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

Abstract

Abstract Dicot leaves grow with pronounced diel (24-h) cycles that are controlled by a complex network of factors. It is an open question to what extent leaf growth dynamics are controlled by long-range or by local signals. To address this question, we established a stereoscopic imaging system, GROWSCREEN 3D, which quantifies surface growth of isolated leaf discs floating on nutrient solution in wells of microtiter plates. A total of 458 leaf discs of tobacco (Nicotiana tabacum) were cut at different developmental stages, incubated, and analyzed for their relative growth rates. The camera system was automatically displaced across the array of leaf discs; visualization and camera displacement took about 12 s for each leaf disc, resulting in a time interval of 1.5 h for consecutive size analyses. Leaf discs showed a comparable diel leaf growth cycle as intact leaves but weaker peak growth activity. Hence, it can be concluded that the timing of leaf growth is regulated by local rather than by systemic control processes. This conclusion was supported by results from leaf discs of Arabidopsis (Arabidopsis thaliana) Landsberg erecta wild-type plants and starch-free1 mutants. At night, utilization of transitory starch leads to increased growth of Landsberg erecta wild-type discs compared with starch-free1 discs. Moreover, the decrease of leaf disc growth when exposed to different concentrations of glyphosate showed an immediate dose-dependent response. Our results demonstrate that a dynamic leaf disc growth analysis as we present it here is a promising approach to uncover the effects of internal and external cues on dicot leaf development.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3