The Synthetic Elicitor 3,5-Dichloroanthranilic Acid InducesNPR1-Dependent andNPR1-Independent Mechanisms of Disease Resistance in Arabidopsis

Author:

Knoth Colleen1,Salus Melinda S.1,Girke Thomas1,Eulgem Thomas1

Affiliation:

1. ChemGen Integrative Graduate Education and Research Traineeship Program, Center for Plant Cell Biology, Institute for Integrative Genome Biology, Department of Botany and Plant Sciences, University of California at Riverside, Riverside, California 92521

Abstract

AbstractImmune responses of Arabidopsis (Arabidopsis thaliana) are at least partially mediated by coordinated transcriptional up-regulation of plant defense genes, such as the Late/sustained Up-regulation in Response to Hyaloperonospora parasitica (LURP) cluster. We found a defined region in the promoter of the LURP member CaBP22 to be important for this response. Using a CaBP22 promoter-reporter fusion, we have established a robust and specific high-throughput screening system for synthetic defense elicitors that can be used to trigger defined subsets of plant immune responses. Screening a collection of 42,000 diversity-oriented molecules, we identified 114 candidate LURP inducers. One representative, 3,5-dichloroanthranilic acid (DCA), efficiently induced defense reactions to the phytopathogens H. parasitica and Pseudomonas syringae. In contrast to known salicylic acid analogs, such as 2,6-dichloroisonicotinic acid (INA), which exhibit a long-lasting defense-inducing activity and are fully dependent on the transcriptional cofactor NPR1 (for Nonexpresser of Pathogenesis-Related genes1), DCA acts transiently and is only partially dependent on NPR1. Microarray analyses revealed a cluster of 142 DCA- and INA-responsive genes that show a pattern of differential expression coinciding with the kinetics of DCA-mediated disease resistance. These ACID genes (for Associated with Chemically Induced Defense) constitute a core gene set associated with chemically induced disease resistance, many of which appear to encode components of the natural immune system of Arabidopsis.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3