Mitochondrial mRNA Polymorphisms in Different Arabidopsis Accessions

Author:

Forner Joachim1,Hölzle Angela1,Jonietz Christian1,Thuss Sabine1,Schwarzländer Markus1,Weber Bärbel1,Meyer Rhonda C.1,Binder Stefan1

Affiliation:

1. Institut Molekulare Botanik, Universität Ulm, D–89069 Ulm, Germany (J.F., A.H., C.J., S.T., M.S., B.W., S.B.); and Molekulare Genetik, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D–06466 Gatersleben, Germany (R.C.M.)

Abstract

Abstract In our analysis of 5′ and 3′ end formation in plant mitochondria, we compared the major transcript ends of all mitochondrial protein-coding genes between the three Arabidopsis (Arabidopsis thaliana) accessions Columbia (Col), C24, and Landsberg erecta (Ler). Differences between transcript patterns were found for seven genes. For atp6-2, no transcripts at all were detected in Ler. This and further analyses suggest that the atp6-2 gene arrangement is absent from the mitochondrial DNA of this accession. All other transcript polymorphisms are attributed to variations at the 5′ termini and were consistently observed in all tissues investigated. mRNA phenotyping of reciprocal Col/Ler, Col/C24, and Ler/C24 F1 hybrids revealed the differing transcript patterns of ccmC to be inherited maternally, suggesting these to arise from differences in the mitochondrial DNA. Biparental inheritance was observed for the polymorphic transcripts of nad4, nad9, ccmB, and rpl5, indicating these differences to be caused by nuclear-encoded trans-factors. Deviant transcript patterns were tested in further accessions and were found in at least three additional accessions. Detailed examination of the nad4 and the nad9 transcripts demonstrates that the respective polymorphisms affect the major mRNAs of these genes. This study shows that natural genetic variation in Arabidopsis can also affect mitochondrial mRNA end processing. These variations can now be used to identify the nuclear genes responsible, as well as the mitochondrial cis-elements required, for 5′ end generation of mitochondrial transcripts.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3