Experimental Analysis of the Rice Mitochondrial Proteome, Its Biogenesis, and Heterogeneity

Author:

Huang Shaobai1,Taylor Nicolas L.1,Narsai Reena1,Eubel Holger1,Whelan James1,Millar A. Harvey1

Affiliation:

1. Australian Research Council Centre of Excellence in Plant Energy Biology, M316, University of Western Australia, Crawley, 6009 Western Australia, Australia

Abstract

Abstract Mitochondria in rice (Oryza sativa) are vital in expanding our understanding of the cellular response to reoxygenation of tissues after anaerobiosis, the crossroads of carbon and nitrogen metabolism, and the role of respiratory energy generation in cytoplasmic male sterility. We have combined density gradient and surface charge purification techniques with proteomics to provide an in-depth proteome of rice shoot mitochondria covering both soluble and integral membrane proteins. Quantitative comparisons of mitochondria purified by density gradients and after further surface charge purification have been used to ensure that the proteins identified copurify with mitochondria and to remove contaminants from the analysis. This rigorous approach to defining a subcellular proteome has yielded 322 nonredundant rice proteins and highlighted contaminants in previously reported rice mitochondrial proteomes. Comparative analysis with the Arabidopsis (Arabidopsis thaliana) mitochondrial proteome reveals conservation of a broad range of known and unknown function proteins in plant mitochondria, with only approximately 20% not having a clear homolog in the Arabidopsis mitochondrial proteome. As in Arabidopsis, only approximately 60% of the rice mitochondrial proteome is predictable using current organelle-targeting prediction tools. Use of the rice protein data set to explore rice transcript data provided insights into rice mitochondrial biogenesis during seed germination, leaf development, and heterogeneity in the expression of nucleus-encoded mitochondrial components in different rice tissues. Highlights include the identification of components involved in thiamine synthesis, evidence for coexpressed and unregulated expression of specific components of protein complexes, a selective anther-enhanced subclass of the decarboxylating segment of the tricarboxylic acid cycle, the differential expression of DNA and RNA replication components, and enhanced expression of specific metabolic components in photosynthetic tissues.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3