The Pollen Receptor Kinase LePRK2 Mediates Growth-Promoting Signals and Positively Regulates Pollen Germination and Tube Growth

Author:

Zhang Dong1,Wengier Diego1,Shuai Bin1,Gui Cai-Ping1,Muschietti Jorge1,McCormick Sheila1,Tang Wei-Hua1

Affiliation:

1. Shanghai Institutes for Biological Sciences-University of California at Berkeley Center of Molecular Life Sciences, National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (D.Z., C.-P.G., W.-H.T.); Instituto de Ingeniería Genética y Biología Molecular, CONICE

Abstract

Abstract In flowering plants, the process of pollen germination and tube growth is required for successful fertilization. A pollen receptor kinase from tomato (Solanum lycopersicum), LePRK2, has been implicated in signaling during pollen germination and tube growth as well as in mediating pollen (tube)-pistil communication. Here we show that reduced expression of LePRK2 affects four aspects of pollen germination and tube growth. First, the percentage of pollen that germinates is reduced, and the time window for competence to germinate is also shorter. Second, the pollen tube growth rate is reduced both in vitro and in the pistil. Third, tip-localized superoxide production by pollen tubes cannot be increased by exogenous calcium ions. Fourth, pollen tubes have defects in responses to style extract component (STIL), an extracellular growth-promoting signal from the pistil. Pollen tubes transiently overexpressing LePRK2-fluorescent protein fusions had slightly wider tips, whereas pollen tubes coexpressing LePRK2 and its cytoplasmic partner protein KPP (a Rop-GEF) had much wider tips. Together these results show that LePRK2 positively regulates pollen germination and tube growth and is involved in transducing responses to extracellular growth-promoting signals.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3