Complex I Dysfunction Redirects Cellular and Mitochondrial Metabolism in Arabidopsis

Author:

Garmier Marie1,Carroll Adam J.1,Delannoy Etienne1,Vallet Corinne1,Day David A.1,Small Ian D.1,Millar A. Harvey1

Affiliation:

1. Australian Research Council Centre of Excellence in Plant Energy Biology M316 (M.G., A.J.C., E.D., C.V., I.D.S., A.H.M.) and School of Biomedical, Biomolecular, and Chemical Sciences M310 (A.J.C.), University of Western Australia, Crawley, Western Australia 6009, Australia; and Australian Research Council Centre of Excellence in Plant Energy Biology, School of Biological Sciences, University of S

Abstract

Abstract Mitochondrial complex I is a major avenue for reduced NAD oxidation linked to oxidative phosphorylation in plants. However, the plant enzyme has structural and functional features that set it apart from its counterparts in other organisms, raising questions about the physiological significance of this complex in plants. We have developed an experimental model in which rotenone, a classic complex I inhibitor, has been applied to Arabidopsis (Arabidopsis thaliana) cell suspension cultures in order to dissect early metabolic adjustments involved in cell acclimation to mitochondrial dysfunction. Rotenone induced a transitory decrease in cellular respiration (0–4 h after treatment). Cell respiration then progressively recovered and reached a steady state at 10 to 12 h after treatment. Complex I inhibition by rotenone did not induce obvious oxidative stress or cell death but affected longer term cell growth. Integrated analyses of gene expression, the mitochondrial proteome, and changes in primary metabolism indicated that rotenone treatment caused changes in mitochondrial function via alterations in specific components. A physical disengagement of glycolytic activities associated with the mitochondrial outer membrane was observed, and the tricarboxylic acid cycle was altered. Amino acid and organic acid pools were also modified by rotenone treatment, with a marked early decrease of 2-oxoglutarate, aspartate, and glutamine pools. These data demonstrate that, in Arabidopsis cells, complex I inhibition by rotenone induces significant remodeling of metabolic pathways involving the mitochondria and other compartments and point to early metabolic changes in response to mitochondrial dysfunction.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3