Tissue Specificity and Evolution of Meristematic WOX3 Function

Author:

Shimizu Rena1,Ji Jiabing1,Kelsey Eric1,Ohtsu Kazuhiro1,Schnable Patrick S.1,Scanlon Michael J.1

Affiliation:

1. Department of Plant Biology, Cornell University, Ithaca, New York 14853 (R.S., E.K., M.J.S.); Plant Biology Department, University of Georgia, Athens, Georgia 30602 (J.J.); and Center for Plant Genomics, Iowa State University, Ames, Iowa 50011 (K.O., P.S.S.)

Abstract

AbstractThe WUSCHEL-related homeobox (WOX) gene PRESSED FLOWER1 (PRS1) performs a conserved function during lateral organ development in Arabidopsis (Arabidopsis thaliana). Expressed in the periphery of the shoot meristem, PRS1 recruits founder cells that form lateral domains of vegetative and floral organs. Null mutations in PRS1 cause the deletion of lateral stipules from leaves and of lateral sepals and stamens from flowers. Although PRS1 expression is described in the L1 layer, PRS1 recruits founder cells from all meristem layers. The mechanism of non-cell autonomous PRS1 function and the evolution of disparate WOX gene functions are investigated herein. Meristem layer-specific promoters reveal that both L1 and L1-L2 expression of PRS1 fail to fully rescue PRS1 function, and PRS1 protein does not traffic laterally or transversely between shoot meristem layers. PRS1 protein accumulates within all meristematic cell layers (L1-L2-L3) when expressed from the native promoter, presumably due to low-level transcription in the L2 and L3 layers. When driven from the PRS1 promoter, full rescue of vegetative and floral prs1 mutant phenotypes is provided by WUSCHEL1 (WUS1), which is normally expressed in the stem cell organizing center of shoot meristems. The data reveal that WUS1 and PRS1 can engage in equivalent protein-protein interactions and direct transcription of conserved target genes, suggesting that their subfunctionalization has evolved primarily via diverse promoter specificity. Unexpectedly, these results also suggest that meristematic stem cells and lateral organ founder cells are intrinsically similar and formed via equivalent processes such that their ultimate fate is dependent upon stage-specific and domain-specific positional signaling.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3