Reduction of Plastid-Localized Carbonic Anhydrase Activity Results in Reduced Arabidopsis Seedling Survivorship

Author:

Ferreira Fernando J.1,Guo Cathy1,Coleman John R.1

Affiliation:

1. Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2

Abstract

Abstract Carbonic anhydrase (CA; EC 4.2.1.1) catalyzes the interconversion of CO2 and HCO3  − and is a major protein constituent of the C3 higher plant chloroplast where it is presumed to play a role in photosynthetic carbon assimilation. In this study, we have used both RNA antisense and gene knockout lines to specifically reduce the activity of the chloroplast βCA1 polypeptide (At3g01500) in the model plant Arabidopsis (Arabidopsis thaliana). Although able to germinate, seedling establishment of transgenic plants is significantly reduced relative to wild-type plants when grown at ambient levels of CO2. Growth at elevated (1,500 μL L−1) CO2 or on plates supplemented with sucrose restores seedling establishment rates to wild-type levels. Seed from wild-type and transgenic plants exhibited no significant differences in seed protein, lipid content, or reserve mobilization during seedling growth. βCA1-deficient seedlings do, however, exhibit reduced capacity for light-dependent 14CO2 assimilation prior to the development of true leaves. The small number of surviving seedlings able to grow and develop are phenotypically similar to wild-type plants, even when subsequently grown at subambient levels of CO2. Microarray analysis of mature leaves of βCA1-deficient plants shows some differences in transcript abundance, particularly with genes involved in ethylene signaling and response. The data suggest that reduced levels of seedling establishment by βCA1-deficient plants could be the result of poor cotyledon photosynthetic performance at the onset of phototrophic growth and prior to the development of true leaves.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3