Comparative Proteomics of Chloroplast Envelopes from C3 and C4 Plants Reveals Specific Adaptations of the Plastid Envelope to C4 Photosynthesis and Candidate Proteins Required for Maintaining C4 Metabolite Fluxes

Author:

Bräutigam Andrea1,Hoffmann-Benning Susanne1,Weber Andreas P.M.1

Affiliation:

1. Institute for Plant Biochemistry, Heinrich-Heine-University, D–40225 Duesseldorf, Germany (A.B., A.P.M.W.); Graduate Program in Genetics, Michigan State University, East Lansing, Michigan 48824 (A.B.); and Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824 (S.H.-B.)

Abstract

Abstract C4 plants have up to 10-fold higher apparent CO2 assimilation rates than the most productive C3 plants. This requires higher fluxes of metabolic intermediates across the chloroplast envelope membranes of C4 plants in comparison with those of C3 plants. In particular, the fluxes of metabolites involved in the biochemical inorganic carbon pump of C4 plants, such as malate, pyruvate, oxaloacetate, and phosphoenolpyruvate, must be considerably higher in C4 plants because they exceed the apparent rate of photosynthetic CO2 assimilation, whereas they represent relatively minor fluxes in C3 plants. While the enzymatic steps involved in the C4 biochemical inorganic carbon pump have been studied in much detail, little is known about the metabolite transporters in the envelope membranes of C4 chloroplasts. In this study, we used comparative proteomics of chloroplast envelope membranes from the C3 plant pea (Pisum sativum) and mesophyll cell chloroplast envelopes from the C4 plant maize (Zea mays) to analyze the adaptation of the mesophyll cell chloroplast envelope proteome to the requirements of C4 photosynthesis. We show that C3- and C4-type chloroplasts have qualitatively similar but quantitatively very different chloroplast envelope membrane proteomes. In particular, translocators involved in the transport of triosephosphate and phosphoenolpyruvate as well as two outer envelope porins are much more abundant in C4 plants. Several putative transport proteins have been identified that are highly abundant in C4 plants but relatively minor in C3 envelopes. These represent prime candidates for the transport of C4 photosynthetic intermediates, such as pyruvate, oxaloacetate, and malate.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3