The Maize Low-Phytic Acid Mutant lpa2 Is Caused by Mutation in an Inositol Phosphate Kinase Gene

Author:

Shi Jinrui1,Wang Hongyu1,Wu Yunsheng1,Hazebroek Jan1,Meeley Robert B.1,Ertl David S.1

Affiliation:

1. Pioneer Hi-Bred International, P.O. Box 1004, Johnston, Iowa 50131

Abstract

Abstract Reduced phytic acid content in seeds is a desired goal for genetic improvement in several crops. Low-phytic acid mutants have been used in genetic breeding, but it is not known what genes are responsible for the low-phytic acid phenotype. Using a reverse genetics approach, we found that the maize (Zea mays) low-phytic acidlpa2 mutant is caused by mutation in an inositol phosphate kinase gene. The maize inositol phosphate kinase (ZmIpk) gene was identified through sequence comparison with human and Arabidopsis Ins(1,3,4)P3 5/6-kinase genes. The purified recombinant ZmIpk protein has kinase activity on several inositol polyphosphates, including Ins(1,3,4)P3, Ins(3,5,6)P3, Ins(3,4,5,6)P4, and Ins(1,2,5,6)P4. The ZmIpk mRNA is expressed in the embryo, the organ where phytic acid accumulates in maize seeds. The ZmIpk Mutator insertion mutants were identified from a Mutator F2family. In the ZmIpk Mu insertion mutants, seed phytic acid content is reduced approximately 30%, and inorganic phosphate is increased about 3-fold. The mutants also accumulatemyo-inositol and inositol phosphates as in thelpa2 mutant. Allelic tests showed that the ZmIpkMu insertion mutants are allelic to thelpa2. Southern-blot analysis, cloning, and sequencing of the ZmIpk gene from lpa2 revealed that thelpa2-1 allele is caused by the genomic sequence rearrangement in the ZmIpk locus and the lpa2-2 allele has a nucleotide mutation that generated a stop codon in the N-terminal region of the ZmIpk open reading frame. These results provide evidence that ZmIpk is one of the kinases responsible for phytic acid biosynthesis in developing maize seeds.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3