Variation in Its C-Terminal Amino Acids Determines Whether Endo-β-Mannanase Is Active or Inactive in Ripening Tomato Fruits of Different Cultivars

Author:

Bourgault Richard1,Bewley J. Derek1

Affiliation:

1. Department of Botany, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Abstract

Abstract Endo-β-mannanase cDNAs were cloned and characterized from ripening tomato (Lycopersicon esculentum Mill. cv Trust) fruit, which produces an active enzyme, and from the tomato cv Walter, which produces an inactive enzyme. There is a two-nucleotide deletion in the gene from tomato cv Walter, which results in a frame shift and the deletion of four amino acids at the C terminus of the full-length protein. Other cultivars that produce either active or inactive enzyme show the same absence or presence of the two-nucleotide deletion. The endo-β-mannanase enzyme protein was purified and characterized from ripe fruit to ensure that cDNA codes for the enzyme from fruit. Immunoblot analysis demonstrated that non-ripening mutants, which also fail to exhibit endo-β-mannanase activity, do so because they fail to express the protein. In a two-way genetic cross between tomato cvs Walter and Trust, all F1 progeny from both crosses produced fruit with active enzyme, suggesting that this form is dominant and homozygous in tomato cv Trust. Self-pollination of a plant from the heterozygous F1 generation yielded F2 plants that bear fruit with and without active enzyme at a ratio appropriate to Mendelian genetic segregation of alleles. Heterologous expression of the two endo-β-mannanase genes in Escherichia coliresulted in active enzyme being produced from cultures containing the tomato cv Trust gene and inactive enzyme being produced from those containing the tomato cv Walter gene. Site-directed mutagenesis was used to establish key elements in the C terminus of the endo-β-mannanase protein that are essential for full enzyme activity.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3