A Matrix Metalloproteinase Gene Is Expressed at the Boundary of Senescence and Programmed Cell Death in Cucumber

Author:

Delorme Valérie G.R.1,McCabe Paul F.1,Kim Dae-Jae1,Leaver Christopher J.1

Affiliation:

1. Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom

Abstract

Abstract Cell-cell and extracellular cell matrix (ECM) interactions provide cells with information essential for controlling morphogenesis, cell-fate specification, and cell death. In animals, one of the major groups of enzymes that degrade the ECM is the matrix metalloproteinases (MMPs). Here, we report the characterization of the cucumber (Cucumis sativus L. cv Marketmore)Cs1-MMP gene encoding such an enzyme likely to play a role in plant ECM degradation. Cs1-MMP has all the hallmark motif characteristics of animal MMPs and is a pre-pro-enzyme having a signal peptide, propeptide, and zinc-binding catalytic domains. Cs1-MMP also displays functional similarities with animal MMPs. For example, it has a collagenase-like activity that can cleave synthetic peptides and type-I collagen, a major component of animal ECM. Cs1-MMP activity is completely inhibited by a hydroxamate-based inhibitor that binds at the active site of MMPs in a stereospecific manner. TheCs1-MMP gene is expressed de novo at the end stage of developmental senescence, prior to the appearance of DNA laddering in cucumber cotyledons leaf discs and male flowers. As the steady-state level of Cs1-MMP mRNA peaks late in senescence and the pro-enzyme must undergo maturation and activation, the protease is probably not involved in nutrient remobilization during senescence but may have another function. The physiological substrates for Cs1-MMP remain to be determined, but the enzyme represents a good candidate for plant ECM degradation and may be involved in programmed cell death (PCD). Our results suggest that PCD occurs only at the culmination of the senescence program or that the processes are distinct with PCD being triggered at the end of senescence.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3