Affiliation:
1. Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755–3576
Abstract
Abstract
The photorespiratory pathway is comprised of enzymes localized within three distinct cellular compartments: chloroplasts, peroxisomes, and mitochondria. Photorespiratory enzymes are encoded by nuclear genes, translated in the cytosol, and targeted into these distinct subcellular compartments. One likely means by which to regulate the expression of the genes encoding photorespiratory enzymes is coordinated temporal control. We have previously shown in Arabidopsis that a circadian clock regulates the expression of the nuclear genes encoding both chloroplastic (Rubisco small subunit and Rubisco activase) and peroxisomal (catalase) components of the photorespiratory pathway. To determine whether a circadian clock also regulates the expression of genes encoding mitochondrial components of the photorespiratory pathway, we characterized a family of Arabidopsisserine hydroxymethyltransferase (SHM) genes. We examined mRNA accumulation for two of these family members, including one probable photorespiratory gene (SHM1) and a second gene expressed maximally in roots (SHM4), and show that both exhibit circadian oscillations in mRNA abundance that are in phase with those described for other photorespiratory genes. In addition, we show that SHM1 mRNA accumulates in light-grown seedlings, although this response is probably an indirect consequence of the induction of photosynthesis and photorespiration by illumination.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology