Extracellular Carbonic Anhydrase Facilitates Carbon Dioxide Availability for Photosynthesis in the Marine DinoflagellateProrocentrum micans

Author:

Nimer Nabil A.1,Brownlee Colin2,Merrett Michael J.1

Affiliation:

1. School of Biological Sciences, University of Wales, Swansea SA2 8PP, United Kingdom (N.A.N., M.J.M.)

2. Marine Biological Association of the United Kingdom, Plymouth PL22PB, United Kingdom (C.B.)

Abstract

Abstract This study investigated inorganic carbon accumulation in relation to photosynthesis in the marine dinoflagellate Prorocentrum micans. Measurement of the internal inorganic carbon pool showed a 10-fold accumulation in relation to external dissolved inorganic carbon (DIC). Dextran-bound sulfonamide (DBS), which inhibited extracellular carbonic anhydrase, caused more than 95% inhibition of DIC accumulation and photosynthesis. We used real-time imaging of living cells with confocal laser scanning microscopy and a fluorescent pH indicator dye to measure transient pH changes in relation to inorganic carbon availability. When steady-state photosynthesizing cells were DIC limited, the chloroplast pH decreased from 8.3 to 6.9 and cytosolic pH decreased from 7.7 to 7.1. Re-addition of HCO3− led to a rapid re-establishment of the steady-state pH values abolished by DBS. The addition of DBS to photosynthesizing cells under steady-state conditions resulted in a transient increase in intracellular pH, with photosynthesis maintained for 6 s, the amount of time needed for depletion of the intracellular inorganic carbon pool. These results demonstrate the key role of extracellular carbonic anhydrase in facilitating the availability of CO2 at the exofacial surface of the plasma membrane necessary to maintain the photosynthetic rate. The need for a CO2-concentrating mechanism at ambient CO2 concentrations may reflect the difference in the specificity factor of ribulose-1,5 bisphosphate carboxylase/oxygenase in dinoflagellates compared with other algal phyla.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3