Characterization of Hypoxically Inducible Lactate Dehydrogenase in Maize

Author:

Christopher M. E.1,Good A. G.1

Affiliation:

1. Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9

Abstract

Abstract Oxygen deprivation induces a wide variety of genes, but the most extensively studied are those encoding enzymes of the glycolytic pathway. Lactate dehydrogenase (LDH, EC 1.1.1.27) activity increases up to 3.5-fold in maize (Zea mays L.) roots during several days of hypoxic induction. This increase in activity is accompanied by a decrease in in vitro enzyme stability. LDH activity in aerobic root extracts has an in vitro half-life of 240 min, decreasing to 100 min in 72-h hypoxically induced plant root extracts. The increase in enzyme activity during hypoxic induction is the result of increased protein levels, which correlate with increased transcript levels. Two ldh transcripts of 1.3 and 1.7 kb are induced, with maximum levels reached by 8 and 24 h, respectively. This suggests that the two ldh genes are differentially regulated. Treatment with the protein synthesis inhibitor cycloheximide does not preclude ldh induction during the first few hours of hypoxic stress, suggesting that new protein synthesis may not be essential for elevation of ldh transcript levels under hypoxic conditions. The rapid and substantial increase in ldh mRNA levels under hypoxic conditions and in the presence of cycloheximide suggests that the ldh gene may be valuable in analyzing the hypoxic signal transduction pathway.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3