Arginase, Arginine Decarboxylase, Ornithine Decarboxylase, and Polyamines in Tomato Ovaries (Changes in Unpollinated Ovaries and Parthenocarpic Fruits Induced by Auxin or Gibberellin)

Author:

Alabadi D.1,Aguero M. S.1,Perez-Amador M. A.1,Carbonell J.1

Affiliation:

1. Departamento de Biologia del Desarrollo, Instituto de Biologia Molecular y Celular de Plantas, Universidad Politecnica de Valencia-Consejo Superior de Investigaciones Cientificas, Camino de Vera 14, 46022-Valencia, Spain

Abstract

Abstract Arginase (EC 3.5.3.1) activity has been found in the ovaries and Young fruits of tomato (Lycopersicon esculentum Mill. cv Rutgers).Changes in arginase, arginine decarboxylase (EC 4.1.1.19), and ornithine decarboxylase activity (EC 4.1.1.17) and levels of free and conjugated putrescine, spermidine, and spermine were determined in unpollinated ovaries and in parthenocarpic fruits during the early stages of development induced by 2,4-dichlorophenoxyacetic acid (2,4-D) or gibberellic acid (GA3). Levels of arginase, free spermine, and conjugates of the three polyamines were constant in unpollinated ovaries and characteristic of a presenescent step. A marked decrease in arginase activity, free spermine, and polyamine conjugates was associated with the initiation of fruit growth due to cell division, and when cell expansion was initiated, the absence of arginase indicated a redirection of nitrogen metabolism to the synthesis of arginine. A transient increase in arginine decarboxylase and ornithine decarboxylase was also observed in 2,4-D-induced fruits. In general, 2,4-D treatments produced faster changes than GA3, and without treatment, unpollinated ovaries developed only slightly and senescence was hardly visible. Sensitivity to 2,4-D and GA3 treatment remained for at least 2 weeks postanthesis.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3