Partial Purification and Characterization of an Inducible Indole-3-Acetyl-L-Aspartic Acid Hydrolase from Enterobacter agglomerans

Author:

Chou J. C.1,Kuleck G. A.1,Cohen J. D.1,Mulbry W. W.1

Affiliation:

1. Horticultural Crops Quality (J.-C.C., J.D.C.) and Soil-Microbial Systems (W.W.M.) Laboratories, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland 20705–2350

Abstract

Abstract Indole-3-acetyl-amino acid conjugate hydrolases are believed to be important in the regulation of indole-3-acetic acid (IAA) metabolism in plants and therefore have potential uses for the alteration of plant IAA metabolism. To isolate bacterial strains exhibiting significant indole-3-acetyl-aspartate (IAA-Asp) hydrolase activity, a sewage sludge inoculation was cultured under conditions in which IAA-Asp served as the sole source of carbon and nitrogen. One isolate, Enterobacter agglomerans, showed hydrolase activity inducible by IAA-L-Asp or N-acetyl-L-Asp but not by IAA, (NH4)2SO4, urea, or indoleacetamide. Among a total of 17 IAA conjugates tested as potential substrates, the enzyme had an exclusively high substrate specificity for IAA-L-Asp. Substrate concentration curves and Lineweaver-Burk plots of the kinetic data showed a Michaelis constant value for IAA-L-Asp of 13.5 mM. The optimal pH for this enzyme was between 8.0 and 8.5. In extraction buffer containing 0.8 mM Mg2+ the hydrolase activity was inhibited to 80% by 1 mM dithiothreitol and to 60% by 1 mm CuSO4; the activity was increased by 40% with 1 mM MnSO4. However, in extraction buffer with no trace elements, the hydrolase activity was inhibited to 50% by either 1 mM dithiothreitol or 1% Triton X-100 (Sigma). These results suggest that disulfide bonding might be essential for enzyme activity. Purification of the hydrolase by hydroxyapatite and TSK-phenyl (HP-Genenchem, South San Francisco, CA) preparative high-performance liquid chromatography yielded a major 45-kD polypeptide as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3