Affiliation:
1. LG Chemical Limited Research Park, P.O. Box 61 Yusong, Taejon, Korea 305–380 (S.J.K.)
Abstract
Abstract
The mode of action of the herbicide 3,7-dichloroquinolinecar-boxylic acid (quinclorac) was examined by measuring incorporation of [14C]glucose, [14C]acetate, [3H]thymidine, and [3H]uridine into maize (Zea mays) root cell walls, fatty acids, DNA, and RNA, respectively. Among the precursors examined, 10 [mu]M quinclorac inhibited [14C]glucose incorporation into the cell wall within 3 h. Fatty acid and DNA biosynthesis were subsequently inhibited, whereas RNA biosynthesis was unaffected. In contrast to the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile, quinclorac strongly inhibited cellulose and a hemicellulose fraction presumed to be glucuronoarabinoxylan. However, the synthesis of (1–>3),(1–>4)-β-D-glucans was only slightly inhibited. The degree of inhibition was time- and dose-dependent. By 4 h after treatment, the concentration that inhibited [14C]glucose incorporation into the cell wall, cellulose, and the sensitive hemicellulose fraction by 50% was about 15, 5, and 20 [mu]M, respectively. Concomitant with an inhibition of [14C]glucose incorporation into the cell wall, quinclorac treatment led to a marked accumulation of radioactivity in the cytosol. The increased radioactivity was found mostly in glucose and fructose. However, total levels of glucose, fructose, and uridine diphosphate-glucose were not changed greatly by quinclorac. These data suggest that quinclorac acts primarily as a cell-wall biosynthesis inhibitor in a susceptible grass by a mechanism that is different from that of 2,6-dichlorobenzonitrile.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献