Affiliation:
1. Department of Agronomy, University of Missouri, 1–87 Agriculture Building, Columbia, Missouri 65211
Abstract
Abstract
Although cessation of growth is the most apparent symptom of boron deficiency, the biochemical function of boron in growth processes is not well understood. We propose that the action of boron in root meristems is associated with ascorbate metabolism. Total inhibition of root growth in squash (Cucurbita pepo L.) plants transferred to boron-free medium coincided with a major decrease (up to 98%) in the ascorbate concentration of root apices. Under low-boron conditions, in which root growth was partially inhibited, ascorbate concentration declined in proportion to growth rate. The decline in ascorbate concentration in boron-deficient root tips was not related to ascorbate oxidation. Ascorbate added to the medium improved root growth in plants supplied with insufficient boron. Increasing concentrations of aluminum in the nutrient medium caused progressive inhibition of root growth and a parallel reduction in ascorbate concentration of root apices. Elevated boron levels improved root growth under toxic aluminum conditions and produced root apices with higher ascorbate concentrations. To our knowledge, this is the first report of a correlation between boron nutrition, ascorbate concentration in root apices, and growth. These findings show that root growth inhibition resulting from either boron deficiency or aluminum toxicity may be a consequence of disrupted ascorbate metabolism.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
112 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献