Root Growth Inhibition in Boron-Deficient or Aluminum-Stressed Squash May Be a Result of Impaired Ascorbate Metabolism

Author:

Lukaszewski K. M.1,Blevins D. G.1

Affiliation:

1. Department of Agronomy, University of Missouri, 1–87 Agriculture Building, Columbia, Missouri 65211

Abstract

Abstract Although cessation of growth is the most apparent symptom of boron deficiency, the biochemical function of boron in growth processes is not well understood. We propose that the action of boron in root meristems is associated with ascorbate metabolism. Total inhibition of root growth in squash (Cucurbita pepo L.) plants transferred to boron-free medium coincided with a major decrease (up to 98%) in the ascorbate concentration of root apices. Under low-boron conditions, in which root growth was partially inhibited, ascorbate concentration declined in proportion to growth rate. The decline in ascorbate concentration in boron-deficient root tips was not related to ascorbate oxidation. Ascorbate added to the medium improved root growth in plants supplied with insufficient boron. Increasing concentrations of aluminum in the nutrient medium caused progressive inhibition of root growth and a parallel reduction in ascorbate concentration of root apices. Elevated boron levels improved root growth under toxic aluminum conditions and produced root apices with higher ascorbate concentrations. To our knowledge, this is the first report of a correlation between boron nutrition, ascorbate concentration in root apices, and growth. These findings show that root growth inhibition resulting from either boron deficiency or aluminum toxicity may be a consequence of disrupted ascorbate metabolism.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3