Purification and Biochemical Characterization of a Novel Ecto-Apyrase, MP67, from Mimosa pudica

Author:

Okuhata Riku1,Takishima Takeshi1,Nishimura Naoaki1,Ueda Shogo1,Tsuchiya Takahide1,Kanzawa Nobuyuki1

Affiliation:

1. Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda-ku, Tokyo 102–8554, Japan

Abstract

Abstract We have previously reported the presence of an apyrase in Mimosa pudica. However, only limited information is available for this enzyme. Thus, in this study, the apyrase was purified to homogeneity. The purified enzyme had a molecular mass of around 67 kD and was able to hydrolyze both nucleotide triphosphate and nucleotide diphosphate as substrates. The ratio of ATP to ADP hydrolysis velocity of the purified protein was 0.01 in the presence of calcium ion, showing extremely high substrate specificity toward ADP. Thus, we designated this novel apyrase as MP67. A cDNA clone of MP67 was obtained using primers designed from the amino acid sequence of trypsin-digested fragments of the protein. In addition, rapid amplification of cDNA ends-polymerase chain reaction was performed to clone a conventional apyrase (MpAPY2). Comparison of the deduced amino acid sequences showed that MP67 is similar to ecto-apyrases; however, it was distinct from conventional apyrase based on phylogenetic classification. MP67 and MpAPY2 were expressed in Escherichia coli, and the recombinant proteins were purified. The recombinant MP67 showed high substrate specificity toward ADP rather than ATP. A polyclonal antibody raised against the recombinant MP67 was used to examine the tissue distribution and localization of native MP67 in the plant. The results showed that MP67 was ubiquitously distributed in various tissues, most abundantly in leaves, and was localized to plasma membranes. Thus, MP67 is a novel ecto-apyrase with extremely high substrate specificity for ADP.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3