ABI4 Activates DGAT1 Expression in Arabidopsis Seedlings during Nitrogen Deficiency

Author:

Yang Yang1,Yu Xiangchun1,Song Lianfen1,An Chengcai1

Affiliation:

1. State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China

Abstract

Abstract Triacylglycerol (TAG) is the major seed storage lipid and is important for biofuel and other renewable chemical uses. Acyl-coenzyme A:diacylglycerol acyltransferase1 (DGAT1) is the rate-limiting enzyme in the TAG biosynthesis pathway, but the mechanism of its regulation is unknown. Here, we show that TAG accumulation in Arabidopsis (Arabidopsis thaliana) seedlings increased significantly during nitrogen deprivation (0.1 mm nitrogen) with concomitant induction of genes involved in TAG biosynthesis and accumulation, such as DGAT1 and OLEOSIN1. Nitrogen-deficient seedlings were used to determine the key factors contributing to ectopic TAG accumulation in vegetative tissues. Under low-nitrogen conditions, the phytohormone abscisic acid plays a crucial role in promoting TAG accumulation in Arabidopsis seedlings. Yeast one-hybrid and electrophoretic mobility shift assays demonstrated that ABSCISIC ACID INSENSITIVE4 (ABI4), an important transcriptional factor in the abscisic acid signaling pathway, bound directly to the CE1-like elements (CACCG) present in DGAT1 promoters. Genetic studies also revealed that TAG accumulation and DGAT1 expression were reduced in the abi4 mutant. Taken together, our results indicate that abscisic acid signaling is part of the regulatory machinery governing TAG ectopic accumulation and that ABI4 is essential for the activation of DGAT1 in Arabidopsis seedlings during nitrogen deficiency.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3