Gravistimulation Changes the Accumulation Pattern of the CsPIN1 Auxin Efflux Facilitator in the Endodermis of the Transition Zone in Cucumber Seedlings

Author:

Watanabe Chiaki1,Fujii Nobuharu1,Yanai Kenichi1,Hotta Takuya1,Kim Dai-Hee1,Kamada Motoshi1,Sasagawa-Saito Yuko1,Nishimura Takeshi1,Koshiba Tomokazu1,Miyazawa Yutaka1,Kim Kyung-Min1,Takahashi Hideyuki1

Affiliation:

1. Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980–8577, Japan (C.W., N.F., K.Y., T.H., D.-H.K., M.K., Y.S.-S., Y.M., H.T.); Department of Chemistry, College of Natural Science, Changwon National University, Changwon City 641–773, Korea (D.-H.K.); Division of Plant Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 702–701, Korea (K.-M

Abstract

Abstract Cucumber (Cucumis sativus) seedlings grown in a horizontal position develop a specialized protuberance (or peg) on the lower side of the transition zone between the hypocotyl and the root. This occurs by suppressing peg formation on the upper side via a decrease in auxin resulting from a gravitational response. However, the gravity-stimulated mechanism of inducing asymmetric auxin distribution in the transition zone is poorly understood. The gravity-sensing tissue responsible for regulating auxin distribution in the transition zone is thought to be the endodermal cell. To characterize the gravity-stimulated mechanism, the auxin efflux facilitator PIN-FORMED1 (CsPIN1) in the endodermis was identified and the localization of CsPIN1 proteins during the gravimorphogenesis of cucumber seedlings was examined. Immunohistochemical analysis revealed that the accumulation pattern of CsPIN1 protein in the endodermal cells of the transition zone of cucumber seedlings grown horizontally differed from that of plants grown vertically. Gravistimulation for 30 min prompted changes in the accumulation pattern of CsPIN1 protein in the endodermis as well as the asymmetric distribution of auxin in the transition zone. Furthermore, 2,3,5-triiodobenzoic acid inhibited the differential distribution of auxin as well as changes in the accumulation pattern of CsPIN1 in the endodermis of the transition zone during gravistimulation. These results suggest that the altered pattern of CsPIN1 accumulation in the endodermis in response to gravistimulation influences lateral auxin transport through the endodermis, resulting in asymmetric auxin distribution in the transition zone.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3