GmPep914, an Eight-Amino Acid Peptide Isolated from Soybean Leaves, Activates Defense-Related Genes

Author:

Yamaguchi Yube1,Barona Guido1,Ryan Clarence A.1,Pearce Gregory1

Affiliation:

1. Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164–6340 (Y.Y., G.B., C.A.R., G.P.); Laboratory of Crop Physiology, Graduate School of Agriculture, Hokkaido University, Sapporo 060–8589, Japan (Y.Y.)

Abstract

Abstract Only a handful of endogenous peptide defense signals have been isolated from plants. Herein, we report a novel peptide from soybean (Glycine max) leaves that is capable of alkalinizing the media of soybean suspension cells, a response that is generally associated with defense peptides. The peptide, DHPRGGNY, was synthesized and found to be active at 0.25 nm and requiring only 5 to 10 min to obtain a maximal pH change. The peptide is located on the carboxy-terminal end of a 52-amino acid precursor protein (Glyma12g00990) deduced from the soybean genome project. A search of the soybean databank revealed a homolog (Glyma09g36370) that contained a similar peptide, DLPRGGNY, which was synthesized and shown to have identical activity. The peptides, designated GmPep914 (DHPRGGNY) and GmPep890 (DLPRGGNY), were capable of inducing the expression of both Glyma12g00990 (GmPROPEP914) and Glyma09g36370 (GmPROPEP890) in cultured soybean suspension cells within 1 h. Both peptides induced the expression of defense genes, including CYP93A1, a cytochrome P450 gene involved in phytoalexin synthesis, chitinaseb1-1, a chitinase involved in pathogen defense, and Glycine max chalcone synthase1 (Gmachs1), chalcone synthase, involved in phytoalexin production. Both GmPROPEP914 and GmPROPEP890 were highly expressed in the roots, relative to the aerial portions of the plant. However, treatment of the aerial portion of soybean plants with hormones involved in elicitation of defense responses revealed a significant increase in expression levels of GmPROPEP914 and GmPROPEP890. A search of gene databases revealed homologous sequences in other members of the Fabales and also in the closely related Cucurbitales but not in any other order of plants.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3