ThemicroRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3Module Regulates Ambient Temperature-Responsive Flowering viaFLOWERING LOCUS Tin Arabidopsis

Author:

Kim Jae Joon1,Lee Jeong Hwan1,Kim Wanhui1,Jung Hye Seung1,Huijser Peter1,Ahn Ji Hoon1

Affiliation:

1. Creative Research Initiatives, Division of Life Sciences, Korea University, Seoul 136–701, Korea (J.J.K., J.H.L., W.K., H.S.J., J.H.A.); and Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (P.H.)

Abstract

AbstractThe flowering time of plants is affected by modest changes in ambient temperature. However, little is known about the regulation of ambient temperature-responsive flowering by small RNAs. In this study, we show that the microRNA156 (miR156)-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 (SPL3) module directly regulates FLOWERING LOCUS T (FT) expression in the leaf to control ambient temperature-responsive flowering. Overexpression of miR156 led to more delayed flowering at a lower ambient temperature (16°C), which was associated with down-regulation of FT and FRUITFULL expression. Among miR156 target genes, SPL3 mRNA levels were mainly reduced, probably because miR156-mediated cleavage of SPL3 mRNA was higher at 16°C. Overexpression of miR156-resistant SPL3 [SPL3(−)] caused early flowering, regardless of the ambient temperature, which was associated with up-regulation of FT and FRUITFULL expression. Reduction of miR156 activity by target mimicry led to a phenotype similar to that of SUC2::rSPL3 plants. FT up-regulation was observed after dexamethasone treatment in GVG-rSPL3 plants. Misexpression and artificial microRNA-mediated suppression of FT in the leaf dramatically altered the ambient temperature-responsive flowering of plants overexpressing miR156 and SPL3(−). Chromatin immunoprecipitation assay showed that the SPL3 protein directly binds to GTAC motifs within the FT promoter. Lesions in TERMINAL FLOWER1, SHORT VEGETATIVE PHASE, and EARLY FLOWERING3 did not alter the expression of miR156 and SPL3. Taken together, our data suggest that the interaction between the miR156-SPL3 module and FT is part of the regulatory mechanism controlling flowering time in response to ambient temperature.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3