Copper Chaperone-Dependent and -Independent Activation of Three Copper-Zinc Superoxide Dismutase Homologs Localized in Different Cellular Compartments in Arabidopsis

Author:

Huang Chien-Hsun1,Kuo Wen-Yu1,Weiss Celeste1,Jinn Tsung-Luo1

Affiliation:

1. Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei 10617, Taiwan (C.-H.H., W.-Y.K., T.-L.J.); and Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel (C.W.)

Abstract

Abstract Superoxide dismutases (SODs) are important antioxidant enzymes that catalyze the disproportionation of superoxide anion to oxygen and hydrogen peroxide to guard cells against superoxide toxicity. The major pathway for activation of copper/zinc SOD (CSD) involves a copper chaperone for SOD (CCS) and an additional minor CCS-independent pathway reported in mammals. We characterized the CCS-dependent and -independent activation pathways for three CSDs localized in different cellular compartments in Arabidopsis (Arabidopsis thaliana). The main activation pathway for CSD1 in the cytoplasm involved a CCS-dependent and -independent pathway, which was similar to that for human CSD. Activation of CSD2 in chloroplasts depended totally on CCS, similar to yeast (Saccharomyces cerevisiae) CSD. Peroxisome-localized CSD3 via a CCS-independent pathway was similar to nematode (Caenorhabditis elegans) CSD in retaining activity in the absence of CCS. In Arabidopsis, glutathione played a role in CCS-independent activation, as was reported in humans, but an additional factor was required. These findings reveal a highly specific and sophisticated regulation of CSD activation pathways in planta relative to other known CCS-independent activation.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3