Affiliation:
1. Department of Biology, Botany, University of Osnabrück, 49076 Osnabrueck, Germany
Abstract
AbstractGlutaredoxins (GRXs) are small, ubiquitous, glutathione-dependent oxidoreductases that participate in redox-regulated processes associated with stress responses. Recently, GRXs have been shown to exert crucial functions during flower developmental processes. GRXs modulate their target protein activities by the reduction of protein disulfide bonds or deglutathionylation reactions. The Arabidopsis (Arabidopsis thaliana) GRX ROXY1 participates in petal primordia initiation and further petal morphogenesis. ROXY1 belongs to a land plant-specific class of GRXs with a CC-type active site motif, deviating from the ubiquitously occurring CPYC and CGFS GRX classes. ROXY1 was previously shown to interact with floral TGA transcription factors in the nucleus, and this interaction is a prerequisite for ROXY1 to exert its activity required for Arabidopsis petal development. Deletion analysis further identified the importance of the ROXY1 C terminus for the ROXY1/TGA protein interactions and for the ROXY1 function in petal development. Here, by dissecting the ROXY1 C terminus, an α-helical L**LL motif immediately adjacent to the ROXY1 C-terminal eight amino acids was identified that is essential for the interaction with TGA transcription factors and crucial for the ROXY1 function in planta. Similar to the α-helical L**LL motifs binding to transcriptional coactivators with liganded nuclear receptors in animals, a hydrophobic face formed by the conserved leucines in the L**LL motif of ROXY1 possibly mediates the interaction with TGA transcription factors. Thus, the α-helical L**LL sequence is a conserved protein-protein interaction motif in both animals and plants. Furthermore, two separate TGA domains were identified by deletion experiments as being essential for mediating TGA protein interactions with ROXYs.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献