A Single Ancient Origin for Prototypical Serine/Arginine-Rich Splicing Factors

Author:

Califice Sophie1,Baurain Denis1,Hanikenne Marc1,Motte Patrick1

Affiliation:

1. Laboratory of Functional Genomics and Plant Molecular Imaging and Centre for Assistance in Technology of Microscopy, Department of Life Sciences, Institute of Botany, University of Liège, B–4000 Liege, Belgium (S.C., M.H., P.M.); Unit of Animal Genomics, Department of Animal Production, GIGA-Research, and Faculty of Veterinary Medicine, University of Liège, B-4000 Liege, Belgium (D.B.)

Abstract

Abstract Eukaryotic precursor mRNA splicing is a process involving a very complex RNA-protein edifice. Serine/arginine-rich (SR) proteins play essential roles in precursor mRNA constitutive and alternative splicing and have been suggested to be crucial in plant-specific forms of developmental regulation and environmental adaptation. Despite their functional importance, little is known about their origin and evolutionary history. SR splicing factors have a modular organization featuring at least one RNA recognition motif (RRM) domain and a carboxyl-terminal region enriched in serine/arginine dipeptides. To investigate the evolution of SR proteins, we infer phylogenies for more than 12,000 RRM domains representing more than 200 broadly sampled organisms. Our analyses reveal that the RRM domain is not restricted to eukaryotes and that all prototypical SR proteins share a single ancient origin, including the plant-specific SR45 protein. Based on these findings, we propose a scenario for their diversification into four natural families, each corresponding to a main SR architecture, and a dozen subfamilies, of which we profile both sequence conservation and composition. Finally, using operational criteria for computational discovery and classification, we catalog SR proteins in 20 model organisms, with a focus on green algae and land plants. Altogether, our study confirms the homogeneity and antiquity of SR splicing factors while establishing robust phylogenetic relationships between animal and plant proteins, which should enable functional analyses of lesser characterized SR family members, especially in green plants.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Reference91 articles.

1. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs;Altschul;Nucleic Acids Res,1997

2. Comparative genomics and evolution of proteins involved in RNA metabolism;Anantharaman;Nucleic Acids Res,2002

3. Lineage-specific loss and divergence of functionally linked genes in eukaryotes;Aravind;Proc Natl Acad Sci USA,2000

4. Systematic genome-wide annotation of spliceosomal proteins reveals differential gene family expansion;Barbosa-Morais;Genome Res,2006

5. Plant SR proteins and their functions;Barta;Curr Top Microbiol Immunol,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3