Partial Purification, Kinetic Analysis, and Amino Acid Sequence Information of a Flavonol 3-O-Methyltransferase from Serratula tinctoria

Author:

Huang Tyng-Shyan1,Anzellotti Dominique1,Dedaldechamp Fabienne1,Ibrahim Ragai K.1

Affiliation:

1. Plant Biochemistry Laboratory and Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada H4B 1R6

Abstract

Abstract Serratula tinctoria (Asteraceae) accumulates mainly 3,3′-dimethylquercetin and small amounts of 3-methylquercetin as an intermediate. The fact that 3-methylquercetin rarely accumulates in plants in significant amounts, and given its important role as an antiviral and antiinflammatory agent that accumulates in response to stress conditions, prompted us to purify and characterize the enzyme involved in its methylation. The flavonol 3-O-methyltransferase (3-OMT) was partially purified by ammonium sulfate precipitation and successive chromatography on Superose-12, Mono-Q, and adenosine-agarose affinity columns, resulting in a 194-fold increase of its specific activity. The enzyme protein exhibited an expressed specificity for the methylation of position 3 of the flavonol, quercetin, although it also utilized kaempferol, myricetin, and some monomethyl flavonols as substrates. It exhibited a pH optimum of 7.6, a pI of 6.0, and an apparent molecular mass of 31 kD. Its K  m values for quercetin as the substrate and S-adenosyl-l-Met (AdoMet) as the cosubstrate were 12 and 45 μ  m, respectively. The 3-OMT had no requirement for Mg2+, but was severely inhibited by p-chloromercuribenzoate, suggesting the requirement for SH groups for catalytic activity. Quercetin methylation was competitively inhibited by S-adenosyl-l-homo-Cys with respect to the cosubstrate AdoMet, and followed a sequential bi-bi reaction mechanism, where AdoMet was the first to bind and S-adenosyl-l-homo-Cys was released last. In-gel trypsin digestion of the purified protein yielded several peptides, two of which exhibited strong amino acid sequence homology, upon protein identification, to a number of previously identified Group II plant OMTs. The availability of peptide sequences will allow the design of specific nucleotide probes for future cloning of the gene encoding this novel enzyme for its use in metabolic engineering.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3