Plant and Bacterial Symbiotic Mutants Define Three Transcriptionally Distinct Stages in the Development of the Medicago truncatula/Sinorhizobium meliloti Symbiosis

Author:

Mitra Raka Mustaphi1,Long Sharon Rugel1

Affiliation:

1. Department of Biological Sciences, Stanford University, Stanford, California 94305

Abstract

Abstract In the Medicago truncatula/Sinorhizobium meliloti symbiosis, the plant undergoes a series of developmental changes simultaneously, creating a root nodule and allowing bacterial entry and differentiation. Our studies of plant genes reveal novel transcriptional regulation during the establishment of the symbiosis and identify molecular markers that distinguish classes of plant and bacterial symbiotic mutants. We have identified three symbiotically regulated plant genes encoding a β,1–3 endoglucanase (MtBGLU1), a lectin (MtLEC4), and a cysteine-containing protein (MtN31). MtBGLU1 is down-regulated in the plant 24 h after exposure to the bacterial signal, Nod factor. The non-nodulating plant mutant dmi1 is defective in the ability to down-regulate MtBGLU1. MtLEC4 and MtN31 are induced 1 and 2 weeks after bacterial inoculation, respectively. We examined the regulation of these two genes and three previously identified genes (MtCAM1, ENOD2, and MtLB1) in plant symbiotic mutants and wild-type plants inoculated with bacterial symbiotic mutants. Plant (bit1, rit1, and Mtsym1) and bacterial (exoA and exoH) mutants with defects in the initial stages of invasion are unable to induce MtLEC4, MtN31, MtCAM1, ENOD2, and MtLB1. Bacterial mutants (fixJ and nifD) and a subset of plant mutants (dnf2, dnf3, dnf4, dnf6, and dnf7) defective for nitrogen fixation induce the above genes. The bacA bacterial mutant, which senesces upon deposition into plant cells, and two plant mutants with defects in nitrogen fixation (dnf1 and dnf5) induce MtLEC4 and ENOD2 but not MtN31, MtCAM1, or MtLB1. These data suggest the presence of at least three transcriptionally distinct developmental stages during invasion of M. truncatula by S. meliloti.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3