Respiratory Oxygen Uptake Is Not Decreased by an Instantaneous Elevation of [CO2], But Is Increased with Long-Term Growth in the Field at Elevated [CO2]

Author:

Davey Phillip A.1,Hunt Stephen1,Hymus Graham J.1,DeLucia Evan H.1,Drake Bert G.1,Karnosky David F.1,Long Stephen P.1

Affiliation:

1. Departments of Crop Sciences and Plant Biology, University of Illinois, Urbana, Illinois 61801 (P.A.D., S.P.L., E.H.D.); Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada (S.H.); Smithsonian Environmental Research Center, Edgewater, Maryland 21307 (G.J.H., B.R.D.); and School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Mi

Abstract

Abstract Averaged across many previous investigations, doubling the CO2 concentration ([CO2]) has frequently been reported to cause an instantaneous reduction of leaf dark respiration measured as CO2 efflux. No known mechanism accounts for this effect, and four recent studies have shown that the measurement of respiratory CO2 efflux is prone to experimental artifacts that could account for the reported response. Here, these artifacts are avoided by use of a high-resolution dual channel oxygen analyzer within an open gas exchange system to measure respiratory O2 uptake in normal air. Leaf O2 uptake was determined in response to instantaneous elevation of [CO2] in nine contrasting species and to long-term elevation in seven species from four field experiments. Over six hundred separate measurements of respiration failed to reveal any decrease in respiratory O2 uptake with an instantaneous increase in [CO2]. Respiration was found insensitive not only to doubling [CO2], but also to a 5-fold increase and to decrease to zero. Using a wide range of species and conditions, we confirm earlier reports that inhibition of respiration by instantaneous elevation of [CO2] is likely an experimental artifact. Instead of the expected decrease in respiration per unit leaf area in response to long-term growth in the field at elevated [CO2], there was a significant increase of 11% and 7% on an area and mass basis, respectively, averaged across all experiments. The findings suggest that leaf dark respiration will increase not decrease as atmospheric [CO2] rises.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3