Brassinolide Induces IAA5, IAA19, and DR5, a Synthetic Auxin Response Element in Arabidopsis, Implying a Cross Talk Point of Brassinosteroid and Auxin Signaling

Author:

Nakamura Ayako1,Higuchi Kanako1,Goda Hideki1,Fujiwara Makoto T.1,Sawa Shinichiro1,Koshiba Tomokazu1,Shimada Yukihisa1,Yoshida Shigeo1

Affiliation:

1. Plant Science Center, RIKEN, Suehirocho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan (A.N., H.G., Y.S., S.Y.); Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan (K.H., T.K.); Plant Functions Lab., RIKEN, Hirosawa, Wako, Saitama 351-0198, Japan (M.T.F., S.Y.); Department of Biological Sciences, Graduate School of Science,

Abstract

Abstract Despite numerous physiological studies addressing the interactions between brassinosteroids (BRs) and auxins, little is known about the underlying molecular mechanisms. We studied the expression of IAA5 and IAA19 in response to treatment with indole acetic acid (IAA) or brassinolide (BL), the most active BR. Exogenous IAA induced these genes quickly and transiently, whereas exogenous BL induced them gradually and continuously. We also found that a fusion of DR5, a synthetic auxin response element, with the GUS (β-glucuronidase) gene was induced with similar kinetics to those of the IAA5 and IAA19 genes in response to both IAA and BL treatment of transgenic plants. These results suggest that the IAA genes are induced by BL, at least in part, via the activation of the auxin response element. Endogenous IAA levels per gram fresh weight did not increase when seedlings of Arabidopsis wild type (WT) or the BR-deficient mutant det2 were treated with BL. Furthermore, the levels of IAA transcripts were lower in the det2 mutant than in the WT, even though endogenous IAA levels per gram fresh weight were higher in the det2 mutant than in the WT. In conclusion, the lack of evidence for auxin-mediated activation of early auxin-inducible genes in response to BL suggests that the BR and auxin signaling pathways independently activate the transcriptional system of the IAA and DR5-GUS genes.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 209 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3