Interacting Transcription Factors from the Three-Amino Acid Loop Extension Superclass Regulate Tuber Formation

Author:

Chen Hao1,Rosin Faye M.1,Prat Salomé1,Hannapel David J.1

Affiliation:

1. Interdepartmental Plant Physiology Major (H.C., D.J.H.) and Molecular, Cellular, and Developmental Biology Major (F.M.R., D.J.H.), Department of Horticulture, Iowa State University, Ames, Iowa 50011–1100; and Department of Plant Molecular Genetics, National Center of Biotechnology, Consejo Superior de Investigaciones Científicas, Cantoblanco Campus University of Madrid, Madrid, Spain (S.P.)

Abstract

Abstract Using the yeast (Saccharomyces cerevisiae) two-hybrid system and a potato (Solanum tuberosum) KNOX protein, designated POTH1, as bait, we have identified seven distinct interacting proteins from a stolon library of potato. All seven cDNAs are members of the BEL1-like family of transcription factors. Among these proteins, there are at least four regions of high sequence conservation including the homeodomain, the proline-tyrosine-proline three-amino acid loop extension, the SKY box, and a 120-amino acid region upstream from the homeodomain. Through deletion analysis, we identified a protein-binding domain present in the carboxy end of the KNOX domain of POTH1. The protein-binding domain in the BEL1 protein is located in the amino-terminal one-half of the 120-residue conserved region of the BELs. RNA-blot analysis showed differential patterns of RNA accumulation for the BELs in various potato organs. The level of StBEL5 mRNA increased in response to a short-day photoperiod in both leaves and stolons. Similar to sense mutants of POTH1, transgenic lines that overexpressed StBEL5 exhibited enhanced tuber formation even under noninductive conditions. Unlike POTH1 sense lines, however, these BEL lines did not exhibit the extreme leaf and stem morphology characteristic of KNOX overexpressers and displayed a more rapid rate of growth than control plants. Both StBEL5 and POTH1 sense lines exhibited an increase in cytokinin levels in shoot tips. StBEL5 lines also exhibited a decrease in the levels of GA 20-oxidase1 mRNA in stolon tips from long-day plants. Our results demonstrate an interaction between KNOX and BEL1-like transcription factors of potato that may potentially regulate processes of development.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3