A New Abscisic Acid Catabolic Pathway

Author:

Zhou Rong1,Cutler Adrian J.1,Ambrose Stephen J.1,Galka Marek M.1,Nelson Ken M.1,Squires Timothy M.1,Loewen Mary K.1,Jadhav Ashok S.1,Ross Andrew R.S.1,Taylor David C.1,Abrams Suzanne R.1

Affiliation:

1. Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, Canada S7N 0W9

Abstract

Abstract We report the discovery of a new hydroxylated abscisic acid (ABA) metabolite, found in the course of a mass spectrometric study of ABA metabolism in Brassica napus siliques. This metabolite reveals a previously unknown catabolic pathway for ABA in which the 9′-methyl group of ABA is oxidized. Analogs of (+)-ABA deuterated at the 8′-carbon atom and at both the 8′- and 9′-carbon atoms were fed to green siliques, and extracts containing the deuterated oxidized metabolites were analyzed to determine the position of ABA hydroxylation. The results indicated that hydroxylation of ABA had occurred at the 9′-methyl group, as well as at the 7′- and 8′-methyl groups. The chromatographic characteristics and mass spectral fragmentation patterns of the new ABA metabolite were compared with those of synthetic 9′-hydroxy ABA (9′-OH ABA), in both open and cyclized forms. The new compound isolated from plant extracts was identified as the cyclized form of 9′-OH ABA, which we have named neophaseic acid (neoPA). The proton nuclear magnetic resonance spectrum of pure neoPA isolated from immature seeds of B. napus was identical to that of the authentic synthetic compound. ABA and neoPA levels were high in young seeds and lower in older seeds. The open form (2Z,4E)-5-[(1R,6S)-1-Hydroxy-6-hydroxymethyl-2,6-dimethyl-4-oxo-cyclohex-2-enyl]-3-methyl-penta-2,4-dienoic acid, but not neoPA, exhibited ABA-like bioactivity in inhibiting Arabidopsis seed germination and in inducing gene expression in B. napus microspore-derived embryos. NeoPA was also detected in fruits of orange (Citrus sinensis) and tomato (Lycopersicon esculentum), in Arabidopsis, and in chickpea (Cicer arietinum), as well as in drought-stressed barley (Hordeum vulgare) and B. napus seedlings.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3