A Transcriptomic and Proteomic Characterization of the Arabidopsis Mitochondrial Protein Import Apparatus and Its Response to Mitochondrial Dysfunction

Author:

Lister Ryan1,Chew Orinda1,Lee May-Nee1,Heazlewood Joshua L.1,Clifton Rachel1,Parker Karen L.1,Millar A. Harvey1,Whelan James1

Affiliation:

1. Plant Molecular Biology Group, School of Biomedical and Chemical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia

Abstract

Abstract Mitochondria import hundreds of cytosolically synthesized proteins via the mitochondrial protein import apparatus. Expression analysis in various organs of 19 components of the Arabidopsis mitochondrial protein import apparatus encoded by 31 genes showed that although many were present in small multigene families, often only one member was prominently expressed. This was supported by comparison of real-time reverse transcriptase-polymerase chain reaction and microarray experimental data with expressed sequence tag numbers and massive parallel signature sequence data. Mass spectrometric analysis of purified mitochondria identified 17 import components, their mitochondrial sub-compartment, and verified the presence of TIM8, TIM13, TIM17, TIM23, TIM44, TIM50, and METAXIN proteins for the first time, to our knowledge. Mass spectrometry-detected isoforms correlated with the most abundant gene transcript measured by expression data. Treatment of Arabidopsis cell culture with mitochondrial electron transport chain inhibitors rotenone and antimycin A resulted in a significant increase in transcript levels of import components, with a greater increase observed for the minor isoforms. The increase was observed 12 h after treatment, indicating that it was likely a secondary response. Microarray analysis of rotenone-treated cells indicated the up-regulation of gene sets involved in mitochondrial chaperone activity, protein degradation, respiratory chain assembly, and division. The rate of protein import into isolated mitochondria from rotenone-treated cells was halved, even though rotenone had no direct effect on protein import when added to mitochondria isolated from untreated cells. These findings suggest that transcription of import component genes is induced when mitochondrial function is limited and that minor gene isoforms display a greater response than the predominant isoforms.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 121 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3