Adenylate Gradients and Ar:O2 Effects on Legume Nodules: I. Mathematical Models

Author:

Wei Hui1,Atkins Craig A.1,Layzell David B.1

Affiliation:

1. Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6 (H.W., D.B.L.); and Botany, School of Plant Biology, The University of Western Australia, Nedlands, Western Australia 6907, Australia (C.A.A.)

Abstract

Abstract Mathematical models were developed to test the likelihood that large cytosolic adenylate concentration gradients exist across the bacteria-infected cells of legume nodules. Previous studies hypothesized that this may be the case to account for the unusually low adenylate energy charge (AEC; 0.65) measured in the plant fraction of metabolically active nodules (M.M. Kuzma, H. Winter, P. Storer, I. Oresnik, C.A. Atkins, D.B. Layzell [1999] Plant Physiol 119: 399–407). Simulations coupled leghemoglobin-facilitated O2 diffusion into the infected cell, through bacteroid nitrogenase activity, with the ATP demand for transport and ammonia assimilation in the plant fraction of ureide- and amide-producing nodules. Although large cytosolic adenylate gradients were predicted to exist in both nodule types, amide nodules were predicted to have steeper AEC gradients (0.82–0.52) than ureide nodules (0.82–0.61). The differences were attributed to an additional ATP demand for Asn synthesis in the amide nodule. Simulations for nodules transferred to an Ar:O2 atmosphere predicted a major reduction in the magnitude of adenylate gradients and an increase in the AEC of the plant fraction. Results were consistent with a number of experimental studies and were used to propose an experimental test of the models.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3