Mechanisms of Glucose Signaling during Germination of Arabidopsis

Author:

Price John1,Li Tsai-Chi1,Kang Shin Gene1,Na Jong Kuk1,Jang Jyan-Chyun1

Affiliation:

1. Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio 43210

Abstract

Abstract Glucose (Glc) signaling, along with abscisic acid (ABA) signaling, has been implicated in regulating early plant development in Arabidopsis. It is generally believed that high levels of exogenous Glc cause ABA accumulation, which results in a delay of germination and an inhibition of seedling development—a typical stress response. To test this hypothesis and decipher the complex interactions that occur in the signaling pathways, we determined the effects of sugar and ABA on one developmental event, germination. We show that levels of exogenous Glc lower than previously cited could delay the rate of seed germination in wild-ecotype seeds. Remarkably, this effect could not be mimicked by an osmotic effect, and ABA was still involved. With higher concentrations of Glc, previously known Glc-insensitive mutants gin2 and abi4 exhibited germination kinetics similar to wild type, indicating that Glc-insensitive phenotypes are not the same for all developmental stages of growth and that the signaling properties of Glc vary with concentration. Higher concentrations of Glc were more potent in delaying seed germination. However, Glc-delayed seed germination was not caused by increased cellular ABA concentration, rather Glc appeared to slow down the decline of endogenous ABA. Except for the ABA-insensitive mutants, all tested genotypes appeared to have similar ABA perception during germination, where germination was correlated with the timing of ABA drop to a threshold level. In addition, Glc was found to modulate the transcription of genes involved in ABA biosynthesis and perception only after germination, suggesting a critical role of the developmental program in sugar sensing. On the basis of an extensive phenotypic, biochemical, and molecular analysis, we suggest that exogenous Glc application creates specific signals that vary with concentration and the developmental stage of the plant and that Glc-induced fluctuations in endogenous ABA level generate a different set of signals than those generated by external ABA application.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Reference38 articles.

1. Arenas-Huertero F, Arroyo A, Zhou L, Sheen J, Leon P (2000) Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev  14  :  2085–2096

2. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA,  Struhl K, eds (1987) Current Protocols in Molecular Biology. Greene Publishing Associates and Wiley-Interscience, New York

3. Beaudoin N, Serizet C, Gosti F, Giraudat J (2000) Interactions between abscisic acid and ethylene signaling cascades. Plant Cell  12  :  1103–1115

4. Bockenhoff A, Prior DA, Grundler FM, Oparka KJ (1996) Induction of phloem unloading in Arabidopsis thaliana roots by the parasitic nematode Heterodera schachtii. Plant Physiol  112  :  1421–1427

5. Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, Leon P,  Nambara E, Asami T, Seo M et al. (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell  14  :  2723–2743

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3