N-Acylethanolamines: Formation and Molecular Composition of a New Class of Plant Lipids1

Author:

Chapman Kent D.1,Tripathy Swati1,Venables Barney2,Desouza Arland D.1

Affiliation:

1. Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, Texas 76203–5220 (K.D.C., S.T., A.D.D.)

2. TRAC Laboratories, 113 South Cedar, Denton, Texas 76201 (B.V.)

Abstract

Abstract Recently, the biosynthesis of an unusual membrane phospholipid,N-acylphosphatidylethanolamine (NAPE), was found to increase in elicitor-treated tobacco (Nicotiana tabacumL.) cells (K.D. Chapman, A. Conyers-Hackson, R.A. Moreau, S. Tripathy [1995] Physiol Plant 95: 120–126). Here we report that before induction of NAPE biosynthesis,N-acylethanolamine (NAE) is released from NAPE in cultured tobacco cells 10 min after treatment with the fungal elicitor xylanase. In radiolabeling experiments [14C]NAE (labeled on the ethanolamine carbons) increased approximately 6-fold in the culture medium, whereas [14C]NAPE associated with cells decreased approximately 5-fold. Two predominant NAE molecular species,N-lauroylethanolamine andN-myristoylethanolamine, were specifically identified by gas chromatography-mass spectrometry in lipids extracted from culture medium, and both increased in concentration after elicitor treatment. NAEs were found to accumulate extracellularly only. A microsomal phospholipase D activity was discovered that formed NAE from NAPE; its activity in vitro was stimulated about 20-fold by mastoparan, suggesting that NAPE hydrolysis is highly regulated, perhaps by G-proteins. Furthermore, an NAE amidohydrolase activity that catalyzed the hydrolysis of NAE in vitro was detected in homogenates of tobacco cells. Collectively, these results characterize structurally a new class of plant lipids and identify the enzymatic machinery involved in its formation and inactivation in elicitor-treated tobacco cells. Recent evidence indicating a signaling role for NAPE metabolism in mammalian cells (H.H.O. Schmid, P.C. Schmid, V. Natarajan [1996] Chem Phys Lipids 80: 133–142) raises the possibility that a similar mechanism may operate in plant cells.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Reference33 articles.

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3