Emission of Plutella xylostella-Induced Compounds from Cabbages Grown at Elevated CO2 and Orientation Behavior of the Natural Enemies

Author:

Vuorinen Terhi1,Nerg Anne-Marja1,Ibrahim M.A.1,Reddy G.V.P.1,Holopainen Jarmo K.1

Affiliation:

1. Department of Ecology and Environmental Science, University of Kuopio, Kuopio FIN–70211, Finland (T.V., A.-M.N., M.A.I., J.K.H.); and Agricultural Experiment Station, College of Natural and Applied Sciences, University of Guam, Mangilao, Guam 96923 (G.V.P.R.)

Abstract

Abstract Several plant species defend themselves indirectly from herbivores by producing herbivore-induced volatile compounds that attract the natural enemies of herbivores. Here we tested the effects of elevated atmospheric CO2 (720 μmol mol−1) concentration on this indirect defense, physiological properties, and constitutive and induced emissions of white cabbage (Brassica oleracea ssp. capitata, cvs Lennox and Rinda). We monitored the orientation behavior of the generalist predator Podisus maculiventris (Heteroptera: Pentatomidae) and the specialist parasitoid Cotesia plutellae (Hymenoptera: Braconidae) to plants damaged by Plutella xylostella (Lepidoptera: Plutellidae) in the Y-tube olfactometer. Elevated CO2 levels did not affect stomatal densities but reduced specific leaf area and increased leaf thickness in cv Lennox. In addition to enhanced constitutive monoterpene emission, P. xylostella-damaged cabbages emitted homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene, sesquiterpene (E,E)-α-farnesene, and (Z)-3-hexenyl acetate. Growth at elevated CO2 had no significant effect on the emissions expressed per leaf area, while minor reduction in the emission of homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene and (E,E)-α-farnesene was observed at elevated CO2 in one of two experiments. The generalist predator P. maculiventris discriminated only between the odors of intact and P. xylostella-damaged cv Rinda plants grown at ambient CO2 concentration, preferring the odor of the damaged plants. The specialist parasitoid C. plutellae preferred the odor of damaged plants of both cultivars grown at ambient CO2 but did not detect damaged cv Lennox plants grown at elevated CO2. The results suggest that elevated atmospheric CO2 concentration could weaken the plant response induced by insect herbivore feeding and thereby lead to a disturbance of signaling to the third trophic level.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3