Maize Starch-Branching Enzyme Isoforms and Amylopectin Structure. In the Absence of Starch-Branching Enzyme IIb, the Further Absence of Starch-Branching Enzyme Ia Leads to Increased Branching

Author:

Yao Yuan1,Thompson Donald B.1,Guiltinan Mark J.1

Affiliation:

1. The Huck Institutes of the Life Sciences (Y.Y., M.J.G.), Department of Food Science (D.B.T.), and Department of Horticulture (M.J.G.), The Pennsylvania State University, University Park, Pennsylvania 16802

Abstract

Abstract Previous studies indicated that the deficiency of starch-branching enzyme (SBE) Ia in the single mutant sbe1a∷Mu (sbe1a) has no impact on endosperm starch structure, whereas the deficiency of SBEIIb in the ae mutant is well known to reduce the branching of starch. We hypothesized that in maize (Zea mays) endosperm, the function of SBEIIb is predominant to that of SBEIa, and SBEIa would have an observable effect only on amylopectin structure in the absence of SBEIIb. To test this hypothesis, the mutant sbe1a was introgressed into lines containing either wx (lacking the granule-bound starch synthase GBSSI) or ae wx (lacking both SBEIIb and GBSSI) in the W64A background. Both western blotting and zymogram analysis confirmed the SBEIa deficiency in sbe1a wx and sbe1a ae wx, and the SBEIIb deficiency in ae wx and sbe1a ae wx. Using zymogram analysis, no pleiotropic effects of sbe1a genes on SBEIIa, starch synthase, or starch-debranching enzyme isoforms were observed. High-performance size exclusion chromatography analysis shows that the chain-length profiles of amylopectin as well as β-limit dextrin were indistinguishable between wx and sbe1a wx, whereas significant differences for both were observed between ae wx and sbe1a ae wx, suggesting an effect of SBEIa on amylopectin biosynthesis that is observable only in the absence of SBEIIb. The amylopectin branch density and the average number of branches per cluster were both higher in endosperm starch from sbe1a ae wx than from ae wx. These results indicate possible functional interactions between SBE isoforms that may involve enzymatic inhibition. Both the cluster repeat distance and the distance between branch points on the short intracluster chains were similar for all genotypes however, suggesting a similar pattern of individual SBE isoforms in cluster initiation and the determination of branch point location.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3