Aluminum Resistance in Maize Cannot Be Solely Explained by Root Organic Acid Exudation. A Comparative Physiological Study

Author:

Piñeros Miguel A.1,Shaff Jon E.1,Manslank Holly S.1,Carvalho Alves Vera M.1,Kochian Leon V.1

Affiliation:

1. United States Plant, Soil and Nutrition Laboratory, United States Department of Agriculture, Agricultural Research Service, Cornell University, Ithaca, New York 14853 (M.A.P., J.E.S., H.S.M., L.V.K.); and Empresa Brasileira de Pesquisa Agropecuária Maize and Sorghum Research Center, 35701–970 Sete Lagoas, Brazil (V.M.C.A.)

Abstract

Abstract Root apical aluminum (Al) exclusion via Al-activated root citrate exudation is widely accepted as the main Al-resistance mechanism operating in maize (Zea mays) roots. Nonetheless, the correlation between Al resistance and this Al-exclusion mechanism has not been tested beyond a very small number of Al-resistant and Al-sensitive maize lines. In this study, we conducted a comparative study of the physiology of Al resistance using six different maize genotypes that capture the range of maize Al resistance and differ significantly in their genetic background (three Brazilian and three North American genotypes). In these maize lines, we were able to establish a clear correlation between root tip Al exclusion (based on root Al content) and Al resistance. Both Al-resistant genotypes and three of the four Al-sensitive lines exhibited a significant Al-activated citrate exudation, with no evidence for Al activation of root malate or phosphate release. There was a lack of correlation between differential Al resistance and root citrate exudation for the six maize genotypes; in fact, one of the Al-sensitive lines, Mo17, had the largest Al-activated citrate exudation of all of the maize lines. Our results indicate that although root organic acid release may play a role in maize Al resistance, it is clearly not the only or the main resistance mechanism operating in these maize roots. A number of other potential Al-resistance mechanisms were investigated, including release of other Al-chelating ligands, Al-induced alkalinization of rhizosphere pH, changes in internal levels of Al-chelating compounds in the root, and Al translocation to the shoot. However, we were unsuccessful in identifying additional Al-resistance mechanisms in maize. It is likely that a purely physiological approach may not be sufficient to identify these novel Al-resistance mechanisms in maize and this will require an interdisciplinary approach integrating genetic, molecular, and physiological investigations.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 128 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3