Patellin1, a Novel Sec14-Like Protein, Localizes to the Cell Plate and Binds Phosphoinositides

Author:

Peterman T. Kaye1,Ohol Yamini M.1,McReynolds Lisa J.1,Luna Elizabeth J.1

Affiliation:

1. Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts 02481 (T.K.P., Y.M.O., L.J.M.); and Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 (E.J.L.)

Abstract

Abstract Membrane trafficking is central to construction of the cell plate during plant cytokinesis. Consequently, a detailed understanding of the process depends on the characterization of molecules that function in the formation, transport, targeting, and fusion of membrane vesicles to the developing plate, as well as those that participate in its consolidation and maturation into a fully functional partition. Here we report the initial biochemical and functional characterization of patellin1 (PATL1), a novel cell-plate-associated protein that is related in sequence to proteins involved in membrane trafficking in other eukaryotes. Analysis of the Arabidopsis genome indicated that PATL1 is one of a small family of Arabidopsis proteins, characterized by a variable N-terminal domain followed by two domains found in other membrane-trafficking proteins (Sec14 and Golgi dynamics domains). Results from immunolocalization and biochemical fractionation studies suggested that PATL1 is recruited from the cytoplasm to the expanding and maturing cell plate. In vesicle-binding assays, PATL1 bound to specific phosphoinositides, important regulators of membrane trafficking, with a preference for phosphatidylinositol(5)P, phosphatidylinositol(4,5)P2, and phosphatidylinositol(3)P. Taken together, these findings suggest a role for PATL1 in membrane-trafficking events associated with cell-plate expansion or maturation and point to the involvement of phosphoinositides in cell-plate biogenesis.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3