The Pivotal Roles of the Plant S-Adenosylmethionine Decarboxylase 5′ Untranslated Leader Sequence in Regulation of Gene Expression at the Transcriptional and Posttranscriptional Levels

Author:

Hu Wen-Wei1,Gong Haibiao1,Pua Eng Chong1

Affiliation:

1. Plant Genetic Engineering Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117543

Abstract

Abstract S-Adenosylmethionine decarboxylase (SAMDC; EC 4.1.1.50) is a key rate-limiting enzyme located in the polyamine biosynthesis pathway. When compared with other organisms, the plant SAMDC genes possess some distinct features because they are devoid of introns in the main open reading frame (ORF) but have an intron(s) in their 5′ untranslated leader sequences, in which two overlapping tiny and small upstream ORFs (uORFs) are present. Our results show that the presence of the 5′ leader sequence plays important roles in transcriptional and posttranscriptional regulation of SAMDC expression. This sequence may help to keep the transcript of its downstream cistron at a relatively low level and function together with its own promoter in response to external stimuli or internal changes of spermidine and spermine to initiate and regulate SAMDC expression. Under stress and high spermidine or spermine conditions, the tiny uORF shows the same function as its overlapping small uORF, which is involved in translational repression and feedback controlled by polyamines. The presence of introns is necessary for the SAMDC up-regulation process when the internal spermidine level is low. Our results suggest that plants have evolved one network to adjust SAMDC activity through their 5′ leader sequences, through which transcriptional regulation is combined with an extensive posttranscriptional control circuit.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3